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ABSTRACT 
 

The past success of lidar instruments in space combined with potentials of laser remote 
sensing techniques in improving measurements traditionally performed by other instrument 
technologies and in enabling new measurements have expanded the role of lidar technology in 
future NASA missions.  Compared with passive optical and active radar/microwave instruments, 
lidar  systems produce substantially more accurate and precise data without reliance on natural 
light sources and with much greater spatial resolution. NASA pursues lidar technology not only 
as science instruments, providing atmospherics and surface topography data of Earth and other 
solar system bodies, but also as viable guidance and navigation sensors for space vehicles. This 
paper summarizes the current NASA lidar missions and describes the lidar systems being 
considered for deployment in space in the near future.   
 
 
CURRENT SPACE-BASED LIDARS 
 

Presently, NASA has four major lidar instruments in space with another to be launched 
later this year. The ICESat (Ice, Cloud and land Elevation Satellite) and CALIPSO (Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observation) are Earth science missions 
providing valuable atmospheric data and monitoring global climate changes [1-4]. The other 
three instruments are part of planetary missions: Mercury Laser Altimeter (MLA) as part of the 
MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) mission 
[5], Mars Meteorological Lidar onboard Phoenix Lander and Lunar Orbiter Laser Altimeter 
(LOLA) onboard the Lunar Reconnaissance Orbiter. Table 1 summarizes the high-level 
specifications of these instruments and their launch dates. All these instruments utilize diode-
pumped Nd:YAG laser as their transmitter source and incorporate some level of redundancy by 
using backup lasers to ensure long operational lifetime in space.  
 

Table 1 Current NASA Space-based Scientific Lidar Instruments 

Mission Lidar 
instruments 

Primary data 
products 

Pulse 
energy

Rep 
rate

No. of 
bars

Peak 
power/bar

No. 
of 

lasers

Telescope 
aperture 
diameter 

Launch 
date 

Required 
lifetime
in space

ICESat 
(Earth Science) 

Laser 
altimeter with 
atm channel 

Ice sheet 
height, clouds 110 mJ 40 54 65-85 W 3 100 cm January 

12, 2003 3 

CALIPSO 
(Earth Science) 

Atmospheric 
backscatter 

Clouds and 
aerosol 
profiles 

220 mJ 20 192 50 W 2 100 cm April 28, 
2006 3 

MESSENGER Laser 
altimeter 

Mercury 
surface 

topography 
20 mJ 8 10 100 W 1 11.5 cm 

× 4 
August 3, 

2004 7 

Phoenix Mars 
Lander 

Atmospheric 
backscatter 

Mars aerosol, 
ice clouds       August 4, 

2007  

Lunar 
Reconnaissance 

Orbiter 

Laser 
altimeter 

Global lunar 
topographic 

model 
2.7 mJ 28 4 70 W 2 14 cm Late 2008 2 

 



ICESat, CALIPSO and the Phoenix Meteorological Lidar instruments use external cavity 
doublers to generate 532-nm radiation along with the fundamental 1064-nm beam. The 532-nm 
beam profiles the atmospheric aerosols, while the 1064-nm beam is used for denser aerosol 
plumes, clouds or ground targets. ICESat lidar uses its 1064-nm beam to measure the height of 
the polar ice sheets and monitor its changes over time. Changes in ice sheet elevations are an 
important indicator of the global climate change and influence the global sea level, which can 
have profound impact on life on Earth. CALIPSO uses both laser wavelengths for collecting 
spatially resolved clouds and aerosols data. The combination of the signal returns at 1064-nm 
and two orthogonal polarizations of 532-nm radiation allows the scientists to extract information 
about cloud water and ice content, and aerosol concentration and its sources. The improved 
information on global coverage of clouds, their altitudes, and their water and ice contents is 
critical to better weather forecasting and more accurate climate models. The atmospheric 
aerosols also affect weather and global climate changes. Aerosols can both reflect the sunlight 
away from Earth, causing the atmosphere to cool and absorb the sunlight, warming the 
atmosphere depending on aerosol concentration and composition. Figure 1 illustrates the 
CALIPSO instrument and its measurements of atmospheric aerosols and clouds. CALIPSO 
payload also include an Imaging Infrared Radiometer (IIR) and a Wide Field Camera (WFC) to provide 
additional data for determining the cloud emissivity and ice particle size distribution.  

Unlike ICESat and CALIPSO, the Mars Meteorological Lidar onboard Phoenix operates 
from a stationary platform on the ground looking upward. The Mars Meteorological Lidar 
measures the atmospheric aerosol concentration and CO2 ice clouds that can lead to a better 
understanding of Mars climate and atmospheric processes. The laser altimeter instruments (MLA 
and LOLA) orbiting Mercury and the moon simply measure the distance to the surface as they 
orbit. The data collected after a large number of orbits enable the development of global three-
dimensional topographical maps. 
 

Table 1. Current NASA Space-based Scientific Lidar Instruments. 
Mission Lidar 

Instruments 
Primary data 

products 
Pulse 

Energy
Rep 
rate

No. of 
Pump 
Bars

Peak 
Power/bar

No. 
of 

lasers

Telescope 
Aperture 
Diameter 

Launch 
date 

Required
Lifetime
In Space

ICESat 
(Earth Science) 

Laser 
Altimeter w/ 
atm channel 

Ice sheet 
height, Clouds

110 mJ 40 54 65-85 W 3 100 cm January 
12,2003 

3 

CALIPSO 
(Earth Science)  

Atmospheric 
Backscatter 

Clouds and 
aerosol profiles

220 mJ 20 192 50 W 2 100 cm April 28, 
2006 

3 

MESSENGER Laser 
Altimeter 

Mercury 
Surface 

Topography 

20 mJ 8 10 100 W 1 11.5 cm 
X4 

August 3, 
2004 3, 

2004 

7 

Phoenix Mars 
Lander  

Atmospheric 
Backscatter 

Mars aerosol, 
Ice clouds 

1 mJ 100   1 10 cm August 4, 
2007 

0.2 

Lunar 
Reconnaissance 
Orbiter 

Laser 
Altimeter 

global lunar 
topographic 

model 

2.7 mJ 28 4 70 W 2 14 cm Late 2008 2 

 
 
ICESat and CALIPSO have been in Earth orbit since 2003 and 2006, respectively, and 

are continuing to operate and transmit data. MESSENGER (MErcury Surface, Space 
ENvironment, GEochemistry, and Ranging) made its first flyby of Mercury in January 2008, 



making lidar measurements of the planet’s surface. The lidar onboard MESSENGER is expected 
to operate well beyond 2011 when the spacecraft settles in Mercury’s orbit after flybys in 
October 2008 and September 2009. The Mars Meteorological Lidar is expected to provide 
clouds, fogs, and dust plumes data leading to be better understanding of the Mars climate after 
the successful recent landing of Phoenix spacecraft in May 2008. 

 
 

Telescope 
Sunshade

Integrated 
Lidar 

Transmitte

Wide 
Field 

Camera 

Star Tracker 
Assembly 

X-Band 
Antenna

Imaging 
Infrared 

Radiomete

Laser 1 

Laser 2 

Payload 
integration at 
Ball 
Aerospace and 
Technologies 

A pictorial 
representation 
of the lidar 
measurements 

 

Figure 1. CLAIPSO instrument and a pictorial representation of the its measurements. 
 

 
CANDIDATE LIDAR INSTRUMENTS FOR FUTURE NASA MISSIONS 
 

The lidar technology is now planned for a wide range of applications that can enable 
NASA’s achievement of its scientific and space exploration goals. These applications fall into 
four general categories:  

a) Earth Science: long-duration orbiting instruments providing global monitoring of the 
atmosphere and land  

b) Planetary Science: orbiting or land-based scientific instruments providing geological 
and atmospheric data of solar system bodies 

c) Landing Aid: sensors providing hazard avoidance, guidance and navigation data 

d) Rendezvous and Docking Aid: sensors providing spacecraft bearing, distance, and 
approach velocity  

 
Earth Science Applications 
 

Earth science reliance on lidar technology is clearly revealed in a National Research 
Council (NRC) report published in 2007, entitled “Earth Science and Applications from Space: 



National Imperatives for the Next Decade and Beyond” [6]. This report reflects the scientific 
community's consensus and is regarded very seriously by NASA planners. It provides a list of 15 
recommended missions for NASA to implement over the next decade. Seven of the 15 are based 
on lidar instruments, with the remaining missions divided between passive optical, radar and 
microwave instrument technologies. This fact reflects the scientific community's belief that the 
ability of lidar to provide highly accurate atmospheric data on a global scale can profoundly help 
climate research. Table 2 lists the lidar missions recommended by the NRC and provides their 
associated cost, estimated by the NRC panel, reflecting their relative complexity.  

Some of the NRC recommended lidar mission concepts are based on previously flown 
instruments but strive for higher accuracy, resolution and coverage than their predecessors. 
ICESat-II and ACE are two such missions that will be built upon the experiences and successes 
of ICESat and CALIPSO missions. However, most of the NRC recommended lidar missions 
represent new measurements requiring considerably more complex instruments than previously 
flown. For instance, the three-dimensional Wind Lidar will use highly spectral pure pulsed lasers 
to allow extraction of wavelength Doppler shift resulting from atmospheric aerosols and 
molecules in motion with the wind. Therefore, the high-pulse energy transmitter laser has to 
employ an elaborate cavity control mechanism and then use a separate stable, single frequency, 
continuous-wave laser as a injection-seeding source. Furthermore, a wind lidar requires precision 
pointing of the transmitted laser beam in several different directions to allow for extraction of the 
horizontal components of vector wind velocity. Precision scanning of the laser beam and 
collecting the returned radiation using an aperture of greater than 50 cm will be a major 
challenge [7,8].  
 

Table 2.  Earth Science Missions Recommended by National Research Council 

Mission Mission Description Timeframe Instrument 

ICESat-II Ice sheet height changes for climate change diagnosis
2010 

to 
2013 

Laser altimeter 

DESDynI 
Surface and ice sheet deformation for understanding 
natural hazards and climate; vegetation structure for 
ecosystem health 

Laser altimeter 

ASCENDS 
Day/night, all-latitude, all-season CO2 column 
integrals for climate emissions 2013 

to 
2016 

Multifrequency laser 

ACE 
Aerosol and cloud profiles for climate and water
cycle; ocean color for open ocean biogeochemistry Backscatter lidar 

LIST 
Land surface topography for landslide hazards and
water runoff 

2016 
to 

2020 

Laser altimeter 

GRACE-II 
High temporal resolution gravity fields for tracking
large-scale water movement 

Microwave or 
laser ranging system 

3D-Winds 
(demo) 

Tropospheric winds for weather forecasting and 
pollution transport Doppler lidar 

 
 
Planetary Science Applications 
 

Planetary science applications are mostly focused on the geology and surface topography 
of the moon, Mars, and other solar system bodies, as well as characterization of the Mars 



atmosphere. In addition to the missions discussed earlier, NASA will continue deployment of 
laser altimeters orbiting various solar bodies. Specifically, we are planning to launch the Lunar 
Orbiter Laser Altimeter (LOLA) later this year. LOLA is expected to orbit the moon for at least 
two years and provide a three-dimensional surface map of the entire lunar surface. This 
information will be critical in landing site selection and designing the future robotic and manned 
landing missions to moon.  

The application of lidar technology for understanding the Mars atmosphere is starting to 
attract the attention of NASA scientists. The NASA report, “Mars Scientific Goals, Objectives, 
Investigations, and Priorities,” prepared in 2006, outlines a series of measurements critical to 
understanding the Mars atmosphere and search for evidence of life. Many of these measurements 
– including atmospheric density variations, seasonal and diurnal cycles, aerosol concentration 
profiles, and detection of water vapor – are best achieved by lidar instruments.  
 
Planetary Landing Applications 
 

Landing aid is another important application of lidar technology in space. Future 
planetary exploration missions will require safe, precision soft-landing to target scientifically 
interesting sites near hazardous terrain features, such as escarpments, craters, slopes and rocks. 
Although the landing accuracy has steadily improved over time to approximately 10 km for Mars 
landing and 1 km for the moon, a drastically different guidance, navigation and control concept is 
required to meet future mission requirements. For example, future rovers will require better than 1 
km landing accuracy for Mars and better than 30 m for the Moon. Laser radar or lidar technology 
can be key to meeting these objectives because it can provide high-resolution three-dimensional 
maps of the terrain, accurate ground proximity and velocity measurements, and it can determine 
atmospheric pressure and wind velocity in the case of Mars landing [9-11]. These lidar 
capabilities can enable the landers of the future to identify the preselected landing zone and 
hazardous terrain features within it, determine the optimum flight path, and accurately navigate 
using precision ground proximity and velocity data. 

Currently, NASA is actively advancing the lidar technology for future lunar landing 
missions through its Autonomous Landing and Hazard Avoidance Technology (ALHAT) 
project. This program is developing three-dimensional imaging and Doppler velocity lidar 
technologies as part of the landing guidance, navigation and control system. The lidar sensors 
being developed under ALHAT will enable safe soft-landing of large robotic, cargo and crewed 
vehicles with a high degree of precision at the designated landing site under any lighting 
conditions.  
 
Rendezvous and Docking Application 
 

The future crew exploration vehicle, which is to replace the space shuttle and be used for 
a crewed mission to the moon, may rely on a lidar sensor for its rendezvous and docking 
maneuvers. The lidar technique is being considered for providing critical distance, approach 
velocity, and relative orientation of the docking port during the rendezvous and docking 
maneuver. The precision and frequent update rate offered by the lidar could be key for mating 
the vehicle with the International Space Station and, in the case of the human mission to the 
moon, for mating the lunar crew module with the Earth re-entry vehicle that will be awaiting it in 
the moon orbit.  

 



 
SUMMARY 
 

The lidar technology will play an increasingly important role in NASA’s plan. Lidar will 
be used for a wide range of applications both as a scientific instrument and as a GN&C sensor in 
many future NASA space missions. Despite past successful lidar missions, deployment of laser 
systems in space remains a very challenging task. This challenge is further evidenced by the 
demand for increasing accuracy with higher coverage measurements and the requirement of a 
number of new measurements leading to considerably complex lidar instruments.   
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